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AERONAUTIC SYMBOLS 
‘1. FUNDAMENTAL AND DERIVED UNITS 

Metric ‘. English 

Symbol 
unit 

I AbsP- unit 
.- 

Power,--i-- P 
Speed __--_-- V 

horsepower (metric)~- _ _ _ _ _ _ _ &..-- _ hqrsepower- _ _ _ __ _____ 
kilometers per hour ------, miles per hour- _ _ _____ 
meters per second- _ ___-_ mps feet per second ________ 

2. GEtiERfi SYMBOLS 

ft (0; qli) 
set ,(or hr) 
,Ib . 

1. hI, 

g:” 

Standard acceleration of -&avity=9.80665 m/s’ : p’ 
Weight=mg Einematic viscosity 

Density (mass per -unit volume) ’ 
Standard density of dry air, 0.12497 kg-m-*-s2 at 15’ C or 32.1740 it&e? 

&ass,!c .: . 1. and 760 mm; or.0.002378 lb-ft-* set’ 
SpecXc weight of “standard” air, 1.2255 kg/ma or 

Moment! of-- inertia=m!?. (Indicate axis. of 0.07651 lb/cu ft ’ ~*‘.’ “--- 
-radius.of gyration k bi proper subscript:) 

Coefficient of viscosity : 
S. AERODYNAMIC SYMBOLk 

Area 
Area of wing 
Gap 
Span 
Chord 
Aspect ratio, i 
True air speed 

. 
Go Angle of setting of win&I (relative to thrust line) . 
*1 y$e)of stabilizer settmg (relative to thrust 

& Resultant moment 
P Resultant angular velocity 

R Reynolds number, p$ where I is a linear dimen- -’ 

. @-name press’ure, 2~ lvs 

Lift, absolute coefficient O!=$ 

Drag, absolute coefficient OD=$ 

Pro6l.e drag, absolute coefficient CQ,=$ 

Induced drag, absolute coefficient CB1=g 

Parasite drag, absolute coefficient C=,=K~ 

Cr&-wind force, absolute coefficient Oc=$, 

sion (e.g., for a.n airfoil of 1.0 ft chord, 100 mph, 
standard pressure at 15’ C, the corresponding 
Reynolds number is 935,400; or for an airfoil 
of 1.0 m chord, 100 ,mps, the corresponding : 
Reynolds number is 6,865,OOO) 

Angle of attack 
Angle of downwash 
Angle of attack, infinite aspect ratio 
Angle of attack, induced 
Anglo of attack, absolute (measured from zero- 

lift po&ion) 
Flight-path angle 
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VOLTiitiliA’S SOLUTION OF THE WAVE EQUATION AS APPLIED TO THREE-DIMENSIONAL 
SUPERSONIC AIRFOIL PROBLEMS 

By MAX. A. HEASLET, HARVARD LOMAX, and ARTHUR L. JONES 

SUMMARY LIST OF IMPORTANT SYMBOLS 

A surface integral is developed which yields solutions qf the 
linearized partial diIerentia1 equation for supersonic sow. 
These solutions satisfy boundary conditions arising in wing 
theory. Particular applications of this general method are 
made, using acceleration potentials, to flat surfaces and to 
uniformly loaded lifting surfaces. Rectangular and trapezoidal 
plan -forms are considered along with triangular forms adapt- 
able to swept-forward and swept-back wings. The case of the 
triangular plan form in sideslip is also included, Emphasis is 
placed on the systematic application of the method to the liftincg 
surfaces considered and on the possibility of further application.. 

a 

A 

local velocity of sound 

b 
c 

aspect rat,io b2 0 RI 
span of wing 
chord of wing 

INTRODUCTION 

The increased emphasis on extending theoretical knowledge 
in supersonic wing analysis has led to a systematic invcsti- 
gation of the various mathematical methods available for 
treating the basic differential equations. In the present 
report advantage has been taken of the direct analogy which 
exists between the linearized partial differential equation 
for supersonic flow in three dimensions and the two-dimcn- 
sional wave equation of mathematical physics. As a result 
of this correspondence, solutions which have been given for 
the wave equation are shown to be applicable to the type of 
boundary condition encountered in wing problems. The 
first section of the report is devoted to the development of 
the solution for the potential of the supersonic flow field. 
The application of this expression to a number of examples 
in supersonic lifting-surface theory illustrates the usefulness 
of such a method of attack. In the first of these examples 
the loadings over the given plan forms are assumed to be 
uniform. The results obtained for such cases appear at 
first to be somewhat academic since undesirable twist and 
camber occur over portions of the resultant surfaces. From 
the uniformly loaded surfaces, however, it is possible to 
develop surfaces having arbitrary load distributions. Im- 
posing the condition that the final lifting surface shall be a 
flat plate leads to the solution of an integral equation in 
every case considered. The results obtained, for some of 
the plan forms considered, have been developed elsewhere 
but not always with the unification of method attained here. 
New configurations are also included among the examples 
given. The methods shown are applicable to a large class of 
unsolved problems of immediate interest. 

c(e) 
CO 

E(u, k) 

E, E’ 

- 
lift coefficient $ 

( > 0 
load distribution function 
constant value of discontinuity in cp over uni- 

formly loaded lifting surface 
incomplete elliptic integral of second kind with 

argument u and modulus k 
complete elliptic integrals of second kind with 

F(u, 4 

f-f,, Hz 
K, K’ 

L 
Ml 
nl, n.2, n3 
Pl 
PU 
P: (X, Y, z) 

moclulus k and 41 -k2, respectively 
incomplete elliptic integral of first kind with 

argument u and modulus k 
functions introducccl in equations (89) and (90) 
complete elliptic integrals of first kind with 

modulus k and t/l- k2, respectively 
lift of wing 
frrc-stream $1 a& number 
direction cosines of normals to surface S 
static pressure on lower side of lifting surface 
static pressure on upper side of lifting surface 
point at which value of Q is to be determined 

P 
S 
SO 
u, v, w 

free-stream dynamic pressure (i p,V02) 

surface enclosing volume V 
area of wing 
perturbation velocities in direction of X, Y, 

V 
VO 
X,Y,Z 
x y,z 
en (u, W 
dn (u, k) 
8% (u, k) 

; 
r 
A 

and Z axes, respectively 
volume 
free-stream velocity 
Cartesian coordinates 
transformed coordinates (See equation (3) .) 

Jacobi’s elliptic functions of argument u and 
modulus k 

angle of attack, radians 
&iQ? 
Mach forecone from point P: (X, Y, Z) 
semivertex angle of triangular wing 

1 
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pressure differential (p I-p,) 
angle measured from X axis 
conical flow coordinate (See equations (27) 

and (30).) 
p tan 6 
Jacobi’s theta function 
cylinder of infinitesimal radius enclosing axis 

of forecone r 
surface at which stream enters induced field of 

wing 
angle of sideslip 

Mach angle of the free stream 
( 

p=arc sin ,2)1- 
0 > 

direction cosines of conormal v to surface S 
incomplete elliptic integral of third kind with 

argument u, parameter y, and modulus k 
density in the free stream 
variables representing either the acceleration 

potential, the velocity potential, or any of 
the three perturbation velocity components 

surface on which boundary conditions are given 
vrlocity potential 
accchration potfntial 
value of acceleration potential on upper side 

of lifting surface 
value of acceleration potential on lower side of 

lifting surface 

1-z 

THEORY 

LINEARIZATION OF DIFFERENTIAL EQUATION FOR COMPRESSIBLE FLOW 

The quasi-linear (i. e., linear in the derivates of highest 
order) differential equation for the velocity-potential + in 
the case of compressible fluid flow in three dimensions, is 
expressible in the form 

where a rcpresenk the local velocity of souutl in the mctlium 
and Cartesian coordinates arc used. Untlrr the nssump- 
tions of small perturbation theory (refcrcnccs I and 2). 
this equation is modified so that it is linear in form and 
consequently more amenable to mathematical analysis. 
Denoting by the variable Q either the acceleration potential, 
the velocity potential, or any of the three perturbation 
velocity components, the linearized expression for equation 
(1) is 

Cl -Mc12)n,+n,,+8,,=0 (2) 

where &IO is the Mach number of the free stream and thus 
equal to the ratio of free-stream velocity and the correspond- 
ing speed of sound. 

By means of the affine transformation 

x=x 

Y= Ji- (1 -M&y 

1 

(3) 

z= J* (l-A&?) 2 

equation (2) can be put into standard forms. Thus, when 
Afo< 1 the plus signs are chosen in the radicals of equation (3) 
and equation (2) becomes 

fbx+fhT+~%%=o (4) 
while for MO,>1 t.he minus signs are used and, as a conse- 
quence, 

fi~~--oyy--~~~=o (5) 
Fcr the case of subsonic Aow (M,<l) the linearized equation 
is thereby reduced to the well-known Laplace equation in 
three dimensions. Similarly, in supersonic flow (iU,>l) 
equation (2) is again reduced to classical type with the re- 
placement of the space coordinate X by a time variable T 
to give t.he two-dimensional wave equation of mathematical 
physics. The linearization of the general differential cqua- 
tion for compressible fluid flow therefore makes available, in 
both subsonic and supersonic studies, the results of the ex- 
tensive work carried out in previous research on problems 
related to equations (4) ancl (5). 

APPLICATION OF GREEN’S THEOREM TO LINEARIZED COMPRESSIBLE 
FLOW EQUATION 

Methods of solution for partial differential equations of 
the type considered here may be classified into two principal 
categories: methods which express the solutions in terms of 
orthogonal functions ancl methods which are based on the 
use of Green’s theorem. Volterra’s solution, discussions of 
which may be found in references 3, 4, and 5, applies the 
latter approach to the two-dimensional wave equation and, 
as a consequence, his results may be adapted to the study of 
supersonic flow and specific solutions of equation (5). 

If the functional notation 

is used, the analytic form of Green’s theorem for equation (5), 
relating a volume integral over the region I’ to a surface 
irtcgral over the surfn.cc S enclosing V, may be written in 
t 11~ form 

* . 

JJJ 

6 
[aL(62) 4L(a)JdV=- * 

JJ 
’ (aD,n-f2D,a)d!3 

where u, Q are any two functions which, together with their 
first and second derivatives, are finite and single valued 
throughout the region considered, and 

where nl, nz, n3 are direction cosines of inward normals to the 
surface S. 

The expression for 0,~ is, of course, a directional deriva- 
t,ive. The corresponding term appearing in Green’s theorem 

.._ . 
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for Laplace’s differential equation (incompressible fluid flow) 
is precisely the directional derivative along the normal to the 
surface S. The analogy between tbe two terms prompts the 
introduction of the so-called conormal to S with direction 
cosines vl, v2, v3 defined as 

VI= -nl, v2=n2, va=na 

The geometrical connection between the normal and the co- 
normal is indicated in figure 1; the angles between the lines 
and the. Y and Z axes remain respectively equal, while the 
angles between the lines and the X axis are supplementary. 

It follows, in particular, tbat if tbc surface S is the SY plant 
the two lines are coincident.; if S is a cone with semivert.cx 
angle equal to 45’ and axis parallel to the X axis, the co- 
normal at any point lies long the surfa.ce S. 

It is now possible to write 

and the surface-volume relation becomes 

J fJ[uL(Q) --nL(u)ldV= f f[ u g-n gJ&s (7) 
. . 

If Q  and u are chosen so as to satisfy equation (5) through- 
out the region V, then equation (7) reduces to the form 

SS aEdS= 
bV ss c$$dS (8) 

The form of equation (8) is a direct analogue to results ob- 
tainable for functions satisfying Laplace’s equation. (See, 
e. g., reference 6, p. 46.) The use of the conormd produces 
this symbolic equivalence. 

VOLTERRA’S METHOD FOR TWO-DIMENSIONAL WAVE EQUATION 

Consider now a surface 7 which, for the purposes of this 
report, may be thought of as being coincident with the XY 
plane and parallel to the air flow which is in the direction 
of the positive X axis. Two such surfaces are represented 
by the darkened areas in figures 2 (a) and 2 (b) . It is desired 
to determine the value of fi at the point P:(X, Y, 2) from a 
knowledge of the boundary conditions given on 7. The 
solution to such a problem is immediately suggested by 
equation (8) since that equation requires only the knowledge 

an 
of D and z along a surface enclosing a given volume, together 

with the knowledge of some particular solution u to the wave 
equation valid everywhere within the enclosed volume. 
Further, it is physically evident that contributions to the 
value of fi at P can come only from points within the forecone 
with vertex at P and also within the envelope of the after- 
cones with vertices at the foremost disturbance points of 7. 
Referring to figure 2 (a), this would mean the volume bounded 
by the foreconc r and the wcclge x springing from the leading 
edge of r; and in figure 2(b), the volume bounded by the 
foreconc r and the a.fterconc x with vertex at the apex of 
t.hc surfncc 7. Yinco for tbc bounclary-value problems in- 
volvecl the surface 7 remains in the XI’ plane, equation (8) 
must bc applied to all three surfaces X, I’, and 7. 

,.._.._ _- h 
-K 
--l- 

,’ 

. . '; 

FIOURE 2.-Mach forecone from point P (X, Y. Z) intersecting surface r. (n) Rectangular 
plan form. 

(b) -7 

FIGURE Z.-Concluded. (b) Triangular plan form. 



4 REPORT NO. 889---NATIONAL ADVISOTY COMMITTEE FOR AERONAUTICS 

Since there is no way of determining Q and g along r the 

attempted solution will be especially difficult unless the 
particular solution u and its derivative with respect to the 
conormal vanish everywhere on r. But this is in fact the 
essential part of Volterra’s method of solution. Thus the 
proper choice of u is 

(This relation, incidentally, is the indefinite integral of the 
fundamental solution representing a supersonic source in 
three dimensions [(X-XJ2- (Y- YJ- (Z-Z:1)2]-1/2.) The 
value of c is equal to zero on the forecone I? since the equa- 
tion of this cone is 

(X-X,)2- (Y-Y,)2- (Z-2,)2=0 

and further, since the conormal is always directed along the 

forecone, 2 is the gradient of CT along I’ and is also zero. 

Equation (8) provides an equality for the distribution of 

~2 and z+ over x and T, provided D and n satisfy equation (5) 

throughout the enclosed volume mentioned. However, al- 
though (r satisfies equation (5) everywhere in the enclosed 
volume opposite T from P (under the XY plane in fig. 2), 
along the line (Y-YJ*+(Z-ZJ*=O (above the XI’ plane 
in fig 2) u is infinite and does not satisfy the assumpt.ions 
made in establishing Green’s theorem. If this line is ex- 
cluded, however, by means of a cylinder K of radius e, with 
axis lying along the line (Y-Y,)*+ (Z--Z1)2=0, then 
equation (8) may be applied to the region outside K and yet 
within the space bounded by X, 7: and F. In fact equation 
(8) can then be written 

where r1 is the portion of T bounding the region of integration. 
If R= ,i(Y- Yl)2+ (Z-Z,)z and cylindrical coordinates E, #, 
and (X-X,) are used, an element of area on the cylinder K is 
dS= - edJld(X-Xl), while 

so that 

If this result is applied to equation (9), one gets 

and, after differentiating equation (11) with respect to X, 

PROCEDURE FOR LIFTING SURFACES AND SYMMETRIC WINGS 

When the region considered is that bounded by the surface 
7, r, and x’, the portion of X on the opposite side of T from 
the point P, then u is finite throughout the region and, as a 
direct consequence of equation (9), 

1 a o=-&rx ss ( (13 71+X’ 
where fi’ is the value of the potential function on the side of 
7 opposite P and V’ is in the opposite direction to v on T. 
Adding equations (12) and (13), 

The integrations over T are now in a form which may be 
interpreted directly in terms of known conditions over bodies 
with given load or symmetrical section. The integration 
over X and X’ can be disposrd of by discussing the two cases 
shown in figure 2. When Q is identified with the velocity 
potential, its value can be shown to bc zero on X and X’ 
regardless of whether the leading edge is swept ahead of or 
behind the Mach cone. When D represents acceleration 
potential or any of the perturbation velocity components, a 
discontinuity exists in the value of D for leading edges swept 
ahead of the Mach cone as in figure 2 (a). Analysis of this 
case, however, reveals that for all wing problems the inte- 
gration over X just cancels the integration over X’. When 
the leading edge is swept behind the Mach cone as in figure 
2 (b) the value of Sz is again zero. Thus in any case there 
results the fundamental equation: 

(14) 

The counterpart of equation (14) for incompressible fluid flow 
is well known. (See, e. g., p. 60 reference 6.) 

Under the particular conditions for which 

aa &a’ 
-=-7 bV bV (15) 
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over the surface 7 equation (14) becomes 

(Q-n’) & dS (16) 

The restrictions imposed in equation (15) can be given 
physical significance after the functions Q, W, and the surface 
r have -been given specific meanings. Consider first the 
case where 7 is a lifting surface. Obviously the normal 
induced velocity w is a continuous function across 7. If 
fi and W are velocity potentials associated with the lifting 
surface, 

and equation (15) is satisfied. If D denotes acceleration po- 
tential or perturbation velocity U, it is necessary to show that 
on the lifting surface 

au au’ -=-- 
bV bV’ 

This relation holds, however, for since w(X, Y, 2) =w’(X, Y, 2) 
along 7, it follows that 

bw bw’ --- 
ax axi 

and from the condition of irrotationality it is possible to ex- 
press the gradient of w in the X direction as the gradient of 
u normal to the surface, that is, in the directions of v and v’. 

Equation (16) is thus applicable directly to lifting-surface 
theory in conjunction with either velocity or acceleration 
potentials. Application can also be made to the determina- 
tion of pressure distribution over the surface of a symmetric 
airfoil at zero angle of attack. In this so-called nonlifting 
case the function 0 is set equal to the induced velocity w, 
7 is the plane of symmetry of the airfoil, and equation (16) 

can be used to establish the boundary conditions, provided 
equation (15) is satisfied. For this to be so 3wJbv must 
equal - bw’lbv’. But conditions of symmetry give w(Z)= 
- w’( - 2) from which the equality is seen to hold. 

RETRANSFORMATION OF COORDINATES 

Since 

direct substitution into equation (16) yields 

Q(X, Y,Z)= 

1 b I-S (S-Q’) (x-x,) (Z--Z&LWY, 

2?r ax. r, [(Y-Y,)2+(2--2,)2] -&x-xl)2-(y- yJ”-(~--2,)2 

This solution applies to equation (5) and, in order to relate 
problems to the linearized equation (2), it is necessary to 
use the transformation of equations (3). If the point X,, 
Y1, 2, transforms to the point ~1, yl, zl, it follows that 

Qc?y,4= 

1 a 

ss 

(Q--Q’) (x-xl) (z-q)dqdy1 -- 
2r ax 71 ICY-YlY4 (~-~1)21J(~-~1)2-PZ~~Y-Y1)2+ (~-in 

where 
(17) 

/?“=M&-1 

APPLICATIONS 
GENERAL REMARKS 

Applications in lifting-surface theory may proceed along 
two possible lines depending upon the boundary conditions 
specified. In what is usually referred to as the direct 
problem, or problem of the first kind, the loading is given 
over the wing and the potential function of the flow field 
field is calculated. From the potential function the shape 
of the aerodynamic surface supporting this load can be 
found relatively easily. The inverse problem, or problem 
of the second kind, concerns itself with the determination of 
the loading over a wing surface from a knowledge of the 
surface shape. In the following sections both of these cases 
will be considered. The direct problem will be discussed 
for various plan forms, the analysis proceeding directly from 
the expression for the potential function given in equation 
(17). The detailed discussion of the direct problem is justi- 
fied by its application to the inverse problem where the load- 
ing over flat plates with rectangular, trapezoidal, and tri- 
angular plan forms is determined. The mathematics of the 
inverse problem is less straightforward since the analysis 
involves the introduction of elemental lifting surfaces with 
constant loading and the solution of an integrai equation 
for each plan form. 

UNIFORMLY LOADED LIFTING SURFACES JN SUPERSONIC FLOW 

Infinite span wing.-Iu order to determine the induced 
velocities on the surface of an infinite span, uniformly loaded, 
supersonic lifting surface by means of the methods derived 
in the preceding section, it is convenient to set Q  equal to 
the acceleration potential cp (reference 2). The lifting surface 
is, in this case, a surface of discontinuity for the function cp 
and corresponds to the surface 71 in equation (17). The 
discontinuity in the value of (o between the upper and lower 
surface is equal to 

where 

p, density in the free stream 
PI static pressure on lower surface 
p, static pressure on upper surface 

It follows that for the uniformly loaded wing in the plane 
zl=O the discontinuity in the acceleration potential is a 
constant, say C,. From equation (17) 

p(x y  +c” 4 
ss 

(x-xJzdx,d~, 2 t 27r ax t(Y-Y1)2+~21J(~--sl)2-~2~~Y-Yl)2+~21 
(1% 
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MO 

FIGCRE 3.-Regions of integration for infinite span unswept wing. 

A sketch of the airfoil plan form is given in figure 3 and 
two possible regions of integration are indicated. In all 
cases the integration with respect to y is performed between 
the limits at which the radical 

vanishes while the integration with respect to x dcpcnds upon 
the manner in which the forcconc of the point I’ intersrcats 
the discontinuity surface. Denoting the chord length of the 
airfoil by c, the following relations are obtained: 

cp=O when r~lpz<O 

p=&f Co when O=x~/Iz<c 

cp=O when c<sFpz 

(1% 

(When double signs are used, the upper sign refers always 
to the case where z>O and the lower sign corresponds to 
z<O.) 

The value of the acceleration potential is thus seen to bc 
zero at all points in space except for those points lying within 
the region between the wedges extending back from the 
leading and trailing edges of the airfoil. 

It is now possible to determine the induced velocities 
associated with the acceleration potential just obtained. 
Since, in linear perturbation theory (rrfercncc 2), 

where U, 0, w are respectively the s, y, z components of the 
perturbation velocities, it follows that 

b l 1 
r=ay 

s 
_m v; co(x,, Y, z)dx, 

w=;J’- :, cp(x1, Y, z)dx, 

The induced velocities for the infinite span airfoil result 
immediately from equations (19) and (21). If the upper 
sign of a double sign is again referred to the z>O case, the 
results may be written in the form 

1 
-1 for 05xTPz<C (22) 

Since the vertical induced velocities are constant, it follows 
that the supersonic airfoil of infinite aspect ratio and uni- 
form load distribution is a flat plate. The relations between 
this loading and angle of attack will be considered later. 

Lifting surface with rectangular plan forms-The complete 
discussion of the supersonic lifting surface with uniform 
loading and rectangular plan form is lengthened considerably 
by the fact that in calculating the acceleration potential at 
the point P with coordinates J, y, z it is necessary to distin- 
guish between several regions in space in which the point 
may be located. These regions arise from consideration of 
the manner in which the forecone of the point P cuts the 
surface of discontinuity. The value of q can be found with 
approximately equal faci1it.y in each of these regions hut, 
since this paper is concerned primarily with effects on the 
surface of the airfoil, the solutions for pertinent regions only 
will be given here. 

Figure 4 shows the rectangular plan form LL’T’T together 
with the coordinate system to be used. The dimensions of 
the wing are chosen so that, the Mach cones extending back 
from the leading edge will not intersect within the boundaries 
of the wing. This restriction, which is not, necessary but 
merely simplifirs the analysis, implies that if b is the span 
of the wing and c the chord length, then 

(23) 

is the so-called 14ach angle of the 

stream and equal to the scmivrrles angles of the Mach cones. 
The loading over thr> rrct angular plan form is to be uniform 

so the expression p,&-(pL is set equal to (TO for -; bi& b 

and O&&C. Thr accrlcration potential, cxprcsscd as a 
function of x, y, Z, is thus obtainable from equation (17) and 
the limits of integration must be determined from the position 
of P. From reasons of symmetry, only the portion of space 
for which y>O need be considered. Once the acceleration 
potential has been calculated, equations (21) may be used 
to calculate induced velocities. The results of such calcula- 
tions are given and the same convention for double signs is 
used. 

Region I,: Behind the leading-edge wedge, ahead of the 
trailing-edge wedge, and bounded laterally by the y=O 
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F~cnm 4.-Lifting surface with Mach cones and coordinate system for rectangular f&m form 

plane and the Mach cone from the leading-edge tip. The 
results in this region correspond to results obtained for the 
infinite span airfoil. Thus 

.=&If C O  

Region IZ: Within the Mach cone from the leading-edge 
tip, outside the Mach cone from the trailing-edge tip, and 
forward of the trailing-edge wedge. Denoting the integrand 
in equation (17) by the symbol 1, the expression for ‘p, when 

y<i b, is 

cp(x,y, z,=+& ;p, (~~y~dxlJ:~b Idyl+J~dx,J~Idyl) 

(25) 
where 

Y1=y-$ 1/(x-x1)2--p% x1=x--p &-f b)2+z2 

y,=y+j J(J:-x1)2-p% X2=xrfPz 

Application of equations (21), after integrating either equa- 

tion (25) or its companion expression when 1~>$ b, yields the 

results: 

$+; *;-arc tan 
x (Y-; b) 

-[(y-f b)‘+z2] 

CO 
u=2?rvo *g-arc tan 

x(x+) ,\ 

z ox’+ [(y-i by++ 

‘=2%(&y+z, +-2+‘[(y-; by+zz] (26) 

co W=wo ,(,-; b) 
-‘+’ arc tan ,,z [(y-$ b).+,$!,+ 

(‘;’ 1> 
(y-z 6) +z2 

,/i-a’ [(y-; by+$]] 

As a partial check of the expression for cp in equations (26), 
it can be seen that in the limit as z approaches zero the value 
of cp agrees with the result given in equation (24) on the 
wing while the value is zero off the wing. 

The values of vertical induced velocity in the plane z=O 
are of particular interest since from a knowledge of the 
distribution of w the surface shape and local angle of attack 
corresponding to the imposed load distribution can be 
determined. The expressions for w for uniform loading 
will be particularly useful later when the load distribution is 
modified in order to obtain airfoils with specified induced 
velocities. Introducing the notation 

(27) 

the following results are obtained for the area covered by 
the tip cone: 

For O<q<l, 
__- 

--COP .J1--T12dq1 __- - 
wz=o= 2uv, 1 S 1112 (28) 

and for -l<o<O, (x<c) 

- COP wz=o= 2rJ7, ?r+ ( s rl JF;;;’ -19,2 dv, > 
After integration of these two expressions, the explicit value 
of vertical induced velocity throughout the entire region is 
found to be 2- ,I 

COP wz=o=2?rvo ?r+Ji=? ---% q + arc sin 7 (29) 

Equations (28) and (29) indicate that the flow over the 
tip portion of the airfoil is of the type referred to as “conical 
flow.” For this type of flow the values of induced downwash, 
aerodynamic loading, etc., are functions merely of the angle q. 

83118441t-2 
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Busemann (reference 7)) Stewart (reference S), and Lager- 
Strom (reference 9) have developed analyses for certain plan 
forms which are postulated on the existence of this type of 
solution. In all cases for which the flow field is conical the 
problem is effectively two-dimensional. Such a simplifica- 
tion reduces the analysis in this report to a consideration of 
a single integral equation while in the references just men- 
tioned complex variable theory can be applied directly. 

Tip of swept-forward lifting surface.-Consider the tip of 
a swept-forward supersonic lifting surface with uniform 
loading (fig. 5)) the angle 6. between the leading edge and the 
x axis and the angle a1 between the trailing edge and the x 
axis both being less than the free-stream iMach angle I*. 

FIGURE 5.-Tip of swept forward lifting surface with traces of Mach CO~PR, cwrdinatr systrm, 
and rrgions definrd for equations (.32) and (.%I. 

In carrying out the integrations it is nrcessary to distinguish 
between the type in which the tip boundaries are behind 
the Mach cones and the type in which the tip boundaries are 
ahead. The analyses of these two cases are of equivalent 
complexity, however, and can be handled with equal facility 
by the methods outlined. For all surfaces whose leading 
edges form an apex, only the case where the wing bounclaries 
are behind the Mach cone will be considered. A Cartesian 
coordinate system is chosen as shown so that the origin 

lies at the apex, the positive x axis extending downstream, 
the y axis extending laterally, and the z axis being directed 
normal to the plane of the plan form and to the free-stream 
direction. The equations of the sides of the lifting surface 
are 

y=o 

y= -x tan so= -!! x 
P 

and 

y=-(x-c) tan S,=--$ (x-c) 

The calculation of (o(z) y, z) again must be divided into 
cases depending upon the location of the point P: (x, y, z). 
In the results listed below arc included the explicit expressions 
for cp (T, y, z); the induced velocities, however, are given 
only in the plane z=O, as the integration to obtain a general 
expression is difficult. The velocities in the z=O plane, 
which are sufficient for the purpose of this investigation, 
can be obtained from a simpler integration since. for the 
integral involved, 

lim 
z-0 I(x,y,z)dr= S S l(r,y,O)ds 

This simplification was used in the analysis of most of the 
lifting surfaces investigated. As before, it is assumed that 
the discontinuity in p is equal to Co. hioreover, the es- 
pressions for wzEo are given in terms of the variables 11 
and w where 

PY 11=- 2 
and w=l -4 (30) 

In this manner the solution is shown to bc conical in the 
rcxgion ahcatl of tht trailing-tip 11~11 cone (fig. 5). For 
points behind this ,1Iach conr the Aow is not conical but a 
function of both 11 and W. 

Region J1: Inside the Irading-tip 1lach cone and ahead of 
t hc trailing-tip h\lach cone. Integration of equation (17) 
yields the result 

co I 
xy+x2 tln-pz2eo 

p=FiL 
-arctan --. 22 

zI.‘i2-/?2(y2+zq 
+arc tan- ..__P- 

%2’X2- p2(y2+ 2) J 

and, after further calculation, 
(31) 
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Region I?: Inside bot,h tip Mach cones. The solution in 
this region is simplified through use of the fact that for linear 
differential equations any algebraic sum of solutions will be 
another solution of the equation. Since the differential 
equation for the acceleration potential is linear, this property 
can be applied to obtain a solution for the region I2 by sub- 
tracting from the expressions given for region Ii correspond- 
ing expressions in which t,he variable & replaces & and (X-C) 
replaces 5. Thus 

q=c” 
[ 

-arc tan XY 
xy+x2 $--8z2eo 

2lr 2. Jx” - p2 ( y2 + 2) 
+arc tan - -+ 

21/x2--p2(y2+z2j 

e 
(x-c)y+(x-c)“+&3, 

arc tan (x--c)Y P 
21/(x-c)2-p2(y2+22) -arC tan z,/(2-c)Lpyy2+22) 1 

and for -l<q<l 
(33) 

W COP Jl-q” 1 
Zc”=27rv; q [- 

--e 0 arc cash ji-i+ 

Jr’ eo2 (I+ eoq) 
e. 

~--. arc cash I-~o+~),-- -; 
tiJmTj2 + i 

e1 arc cash Ifi- 

-Ji - e,2 -- arc cash p/y-j 
6 

(34) 

Lifting surface with trapezoidal plan form.-The linear 
property of the differential equation may bc used to advan- 
tage in determining the flow about a trapezoidal lifting sur- 
face with uniform lift distribution, since the boundary 
conditions within the plan form of the airfoil arc obviously 
satisfied when the acceleration potential for a triangular 
tip is subtracted from tlic poteutial for tlic rcctangulai 
surface. 

Supposc (fig. 6) the nnglc of rakr of the trapczoitl is 6. and 
that a0 is less than the Mach angle p. Thr acceleration 
potential will bc identical, over the central portion of the 
surface, to that for the lifting surface of infinite aspect ratio. 
Over the parts of the surface which arc blanketed by the tip 
Mach cones the flow will, howcvcr, be modified. Because 
of symmetry the determination of this modification need 
only be carried out on one side of thr figure. 

If the coordinate axes arc chosen as shown in figure 6, the 
lateral boundary of thr lifting surface is 

y= -x tall &“= -!@  
P 

It has been shown that both the rectangular plan form and the 
triangular plan form experience conical-type flow over the 
region within the tip Mach cones. Thus, the variable 77 
clefined in equation (30) may bc used. 

Region II: Inside the Mach cone originating at the leading- 
edge tip, outside the Mach cone from the trailing-edge tip, 
forward of the trailing-edge wedge, and to the left of the 
y=O plane. 

For - l<q<O: 

COP 
=2?rv, 

-- ;+ --- arc tan dlyr12 +$ arc cash .ii - 

Ji=@ 
e. arc cash #$$#I (35) 

FI(:~K& Ii.-Trniweoidal lifting surlncr with traces of Mach cones, coordinate system, and 
regions deAned for equation (35). 

Swept-back lifting surface.-As another example of the 
way in which the linearity of the differential equation may be 
ut,ilizetl to obtain further solutions, the induced vertical 
velocities for a swept-back wing will be determined for the 
cast in which the leading and trailing edges lie behind their 
rcspcctivc ;\ Iach cones (fig. 7). The boundaries of the plan 
form arc given by the equations 

4 
y=-p (x-c), Y=$ (J-C) 

The flow will be conical ahead of the trailing-edge Mach 
COIN where the induced velocities can be expressed in terms 
of the variable 7. Behind the trailing-edge Mach cone the 
flow will not be conical but will bc expressible in terms of the 
variables 7 and w= 1-c. 

X 

Consider first the region of conical flow. In order to 
determine wZZo for a given value of 1 it is possible to con- 
sider separately the induced effects produced by each half of 
the surface. But in the region ahead of the trailing-edge 
Mach cone, the induced velocities arising from one half of 
the surface are given by the formula for a similar region on 
the swept-forward surface. For reasons of symmetry the 
results for thr entire swept-back lifting surface need only be 
given for values of 7 within the limits - l<v<O. 

.- 
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I MO 

i 

Leading-edge 
Mach cone -,. 

FIGURE 7.-Swept-back lifting surface with traces of Mach cones, coordinate system, and 
regions defined for equations (36) and (37). 

In the region where the flow is not conical the solution will 
be built up of a combination of solutions obtained from the 
regions of conical flow. 

Region I1 : Inside the leading-edge Mach cone, outside the 
trailing-edge Mach cone, and to the left of the y=O plane. 
For -l<r]<O 

arc cash L+----- 41 -eo2 
1171 00 arc cash (wq 0 v2 1 

-Region Iz: Inside both Mach cones and to the left of the 
y= 0 plane. The solution in this region can be produced by 
subtracting from the value of wZCo given for region 1, the 
value of wZno g iven for the same region except that in the 
latter case &, is replaced by 61 and z by (x-c). Thus, 

Although the uniformly loaded lifting surface was the only 
prescribed loading analyzed, it should be noted that the 
basic integration leading to a solution of this type of prob- 
lem (equation (17)) is in no way restricted to a uniform load. 
Arbitrary loadings that may or may not be analytic functions 
of x and y can be specified and the problem therefore becomes 

one of technique in integration. The solutions for the uni- 
formly loaded surfaces, however, are particularly useful. By 
methods of superposition these solutions can be used to ob- 
tain the surface loading for specified plan forms (the inverse 
problem) as will be illustrated in the following section. 

LOAD DISTRIBUTIONS ON FLAT-PLATE LIFTING SURFACES IN SUPERSONIC 
FLOW 

Infinite span wing.-Since the vertical induced velocity is 
constant for the supersonic airfoil of infinite aspect ratio 
(equation (22)) and uniform load, it follows that the airfoil 
is a flat plate. This property distinguishes the infinite aspect 
ratio problem from all other plan forms considered, for the 
load distribution must be modified in the latter cases so that 
twist and camber are removed from the wing to obtain a flat 
plate. 

Denoting the angle of attack of the airfoil by CL, 

we0 (y=-- --=a2 dM= 
vo (38) 

Moreover, 

and, setting 
P1--Pu=Po((Pu-(Pl) ‘POQO 

P~--P~-AP ____- 
1 v2 P 
KPO 0 

it follows that 

(39 

Eliminating Co between equations (38) and (39), 

Ap 4a --=- -- 
P ,lMo’-1 (49) 

The result given in equation (40) is the well-known Ackeret 
expression developed in reference 10. The derivation here 
follows the approach of Prandtl (reference 2). 

Rectangular plan form.-Since the vertical induced velocity 
for the uniformly loaded supersonic airfoil of rectangular 
plan form is not constant over the portion of the wing 
covered by the tip biach cones, it is necessary to modify the 
load distribution within this region in order to get a flat plate. 
The determination of the required load distribution will be 
shown to depend on the solution of an integral equation and 
subsequent problems dealing with other plan forms will, 
from a mathematical st.andpoint, be similar in form. 

The rectangular plan form will be thought of as being built 
of superimposed trapezoidal lifting surfaces with variable 
angles of rake (fig. 8), each t)rapezoidal surface having a. uni- 
form load distribution but. with loading allowed to vary with 
the variable rake angle 6. 

Since the flow over the part of the airfoil within the Mach 
cone is conical, it. is possible to express wZEo as a function of 
q where 

+! 
X 

Setting 
p t.an 6=8 
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and using equation (35) 

where C’(0)=cpu-(ot for the single trapezoidal surface with 
rake angle 6. 

The solution of the problem depends on the determination 
of a function C’ (0) which, when substituted in equation (41), 
will yield a constant value of w,=,(~); that is, a value of w,=~ 
independent of the variable 7. Imposing the condition that 

dWZ=ll-o 
dv 

the problem is resolved into one of solving the equation 

By means of the notation 

the integral equation is written in t,he form 

where the singularity in the integrand necessitates the USC 
of the infinitesimal E. The evaluation of the derivative 
thus leads to the expression 

e 

FIQURE Q.-Region of intogrntion showing line of singularity for equation (44). 

It can be shown from equation (35) that, if C’(O) is a con- 
tinuous function, 

Hence 
o= JGZ 1 CYe)de 

71 S o fl+e (42) 

and the solution of this equation is 

c’ (6 = aej- (43) 

where C, is a constant to be determined later. Substituting 
from equation (43) into equation (41) 

(44) 

The region of integration in the v1O plane for the double 
integral of equation (44) is shown as the cross-hatched area 
of figure 9, a singularity in the integrand occurring along the 
lint e= -111. Rewriting the equation and reversing the 
order of integration in the double integral, 

~z?rvowbf~z=o~ 
P4 

- - 2~ arc sin@ ];-ljzJ”l F d7, 

-q-c de 
h+e 483 1 

The bracketed expression in this equation can be shown to 
vanish for all values of Q between zero and -1 so that, 
finally, 

wzzo=~ 27r arc sin 43 1 1 - ClPT =p 
2vo (45) 

0 

Since the trapezoidal lifting surfaces are superimposed, 
the loading C(O) over the resultant rectangular plan form 
satisfies the relation 

13. .- ___. -_ - . . .  .  . I  . , . I  ,  - . - - . . _  .  

- -  
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Imposing the condition that C(S)=0 at 0=0, it follows that 

C(e) = 2C, arc sin fi (46) 

This equation gives the incremental change of acceleration 
potential between the upper and lower lifting surface of the 
rectangular wing. As a result the increment in pressure is 

pl-pu=p,(cp,--cpl)=2poC~ arc sin JB 

Expressing the pressure difference in nondimensional terms, 

P~P,-AP-~C, 
1 4 VO” 

arc sin Je 
2 PoVo2 

(47) 

The constant Cl may be eliminated between equations (45) 
and (47) and as a consequence 

AP WZ4 8 -=-- ~- 
P VII Pa 

arc sin JS 

Since the angle of attack O( of the airfoil is by definition 

equal to w’~f, the final expression for the loading, in coeffi- --v 0 
cient form, over the outer portions of the rectangular wing is 

AP 8a 
(1 

.=. arc sin T’e 
T>‘M)*- 1 

The general approach used to obtain this result is similar to 
that used by Schlichting (reference 11). The error in 
Schlichting’s final result has been noted by Busemann and 
others. 

Lift coefficient CL for an arbitrary wing is dcfinccl by the 
relation 

(49) 

where 
L= total lift of the wing 
dS=element of area on the wing 
So= total area of wing 

For the rectangular wing the values of Ap/a over the tip 
and center sections arc given by equations (48) and (40). 
As a result of this integration 

where A is the aspect ratio and by definition equal to the 
ratio of the square of the span and the wing arca. As a 
final conclusion the lift-curve slope of the wing is 

(51) 

Trapezoidal plan form.-The results given in equations 
(48) and (51) are capable of generalization to the case of the 
flat plate having trapezoidal plan form and with rake angle 
& less than the Alach angle of the stream. For such a 
configuration the airfoil is again blanketed in part by the 
tip Mach cones and the loading in this outer section of the 

airfoil must be adjusted properly to give constant induced 
vertical velocity. Superposition of trapezoidal lifting sur- 
faces with loadings varying with rake angle 6 can again be 
used and the conical nature of the flow employed. Setting 

rl= OYlX 

e=p tan 6 

e,=p tan ?io 

equation (35) leads to the expression 

(52) 

where cI(e)=pu-‘pl for the single trapezoidal surface with 
rake angle 6. 

The analysis in this case follows along lines directly analo- 
gous to that used for the rectangular surface. For the 
present configuration the loading function for the superim- 
posed trapezoids is given by the relation 

and the integration to obtain wZcO can be simplified to 
give, as a final result, 

PC1 l S Tde _-- -~ 
wz=n=-2~~~ ea I’(epYI&j (1-e) 

_ Cl@ 
2Vo (54) 

The loading P(0) over the resultant trapezoidal plan form 
can be found from the relation 

From the boundary condition that C(e)=0 at e=eo it 
follows that 

c(e) =2C, n.rc sin e--e0 
21-- i-e0 

nncl 
P~-P,,-AP 4c, - 
; Po1/;12 

P 
= v7 arc sin 

.- 
(55) 

Elimination of CL bctwcen equations (54) and (55) and 
introduction of angle of attack LY for -w,=,/Vo gives as 
aerodynamic loaclin, v over the portion of the airfoil within 
the tip Mach cones the expression 

(56) 

Figure 10 indicates the variation of the loading over the tip 
section of the trapezoid. The variable @/a)(Ap/p) is 
plotted against P tan 6 for P tan a0 equal to 0, 0.3, and 0.6. 
The curve for p tan &=O corresponds to the case of the 
rectangular wing and shows results in agreement withequa- 
tion (48). 
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By means of equation (49) togct.hcr with equations (56) 
and (40) the lift cocfficicnt of the tmpczoitlal wing is cxprcs- 
sihlc in the form 

CL=“;; ( 
1 -!“b tall 50-,$ tan ,u 

1-i tan 60 
1 

(57) 

Introducing the aspect ratio A of the wing where 

&/&--.Jm 
c 1-d tan 60 

( > 

one gets for lift coefficient the relation 

(5% 

From equation (57), 

--=--- ( 

c c 
dC, 4 l--z6 tan 6o-26 tan p 

da P l--i tan 60 
(5% 

In figure 1 1, p ‘2 is plotted as a function of Ap for &=O, it 

and 1. The curve for Bo=O agrees with results given by 
equation (51) for the rectangular wing. All curves are 

0 2 4 6 8 IO 

tcrminatctl at values of AID for which thr Lip AIach cones 
intrrscct on the trailing edge of the wing. 

Triangular plan form, type l.-The pressure distribution 
over triangular lifting surfaces with constant induced vertical 
velocities will bc devcloprd in the following three sections. 
These plan forms arc indicated in figures 12(a), 12(b), and 
12(c) and shall bc denoted, respectively, as types 1, 2, and 3. 
Types 1 and 2 are actually special casts of type 3; namely, 
the cases where one leading rdgc is parallel to the free stream, 
and where both leading edges make equal angles with the 
stream direction. Type 3 includes any plan form which has 
leading edges swept behind the Mach cone but on opposite 
sides of an axis drawn through the vertex of the triangle 
and parallel t,o the free stream; and, further, has a trailing 
edge such that the Mach cones from either tip do not cross 
the surface of the wing. The principal reason for considering 
the three types separately is to show the manner in which 
the spanwise loading appears in the solution of t,he problem. 
In types 1 and 2 the proper load distribution is found readily 
while the final type requires a more careful treatment. 

In order to determine the load distribution over the airfoil 
it will be convenient to use a differential element over which 
the loading is uniform. The elements may then be summed 
and the distribution of loading adjusted so that the induced 
vertical velocity at any point on the total lifting surface is 

8. - 
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FIGURE la.-Triangular flat platr lifting surfaces. (a) Type 1. (b) Type 2. (cl Type 3. 

constant. For the triangular plan forms it is possible to 
assume that conical flow exists and the analysis may be 
carried out using the angular coordinates that have already 
been introduced. 

If the elements are summed over the type 1 triangular 
wing, induced vertical velocity is 

Figure 13 shows the elemental lifting surface to be used. 
The sides of the element extend back from the tip of the 
Mach cone; making angles 6 and S+ A6 with the positive 
x axis or free-stream direction. Corresponding to previous 
notation, the relations 0=fl tan 6 and e-j-Ae=/3 tan (h/-As) 
are used. The vertical velocity induced by the element of 
surface may be denoted by Aw and it follows that 

(63) 

where c(e)=p,-pol for the element at 6=arc tan - ;. If 

wzEo is constant, then 

Aw=w(e+Ae, 9) -w(e, 1) and from this criterion the function C(0) will be determined. 

where w(e, 7) and w(0+ A0,v) arc the velocities induced by the 
triangular-tip surfaces with uniform loading and with tip 
angles equal to 6 and s+As, respectively. Applying a 
limiting process, 

lim gxlim w(e+ae, d-w(e, l?)=* 
A0+0 A0 A9+0 ae be 030) 

It follows that wLsO for the resultant lifting surface will be 
evaluated by an integration with respect to 0. If bw,,olbe 
can be expressed in the form of an integral with respect to 
7, t.he relation for wzzo will then be similar to those given 
in equations (41) and (52) for the previous plan forms and 
the expectation will be that the function C(0) can he deter- 
mined to give constant induced vertical velocity. 

The method of attack just outlined is postulated on the 
existence of an integral expression for aw,=,/dB. Such a,n 
expression is, however, obtainable directly from the integrals 
in equat,ion (32). Integrating these relations by parts 
after first differentiating by 0, leads one to the formulas: 

For -l<q<O 

bW,=O -=2$o[g&+J be 

and for 0 <V < 1 
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Thus, using methods similar to those introduced in the 
development of equation (42), 

(+g Jl-12 1 *o C(e)de __ __ 
aa 8 s 

f%l a@ de+- 
0 v-i-e 7%--172 o 17+e s 

=a- S 00 C(e)de 
.-a~ o q+e (64) 

The general solution of this equation is 

where Cl and 6, are constants. Since, however, the Kutta- 
Joukowski condition requires that loading vanish along the 
edge 0=0, it follows that C,=O and the required loading 
takes the form 

(65) 

If equation (65) is substituted into equation (63), vertical 
induced velocity can bc calculated from the cspression 

(66) 

The region of integration in the ~1, 0 plane for the double 
integral of equation (66) is shown in figure 14 for the case in 
which -&<q<O. A singularity in the integrand of the 
double integral exists along the line O+ql=O. Reversing 
the order of integration, equation (66) may bc rewritten as 

27rvow,=o ea de -au 
pc, =-I 

/yimq2 I’ _ _ .~_ _ --.- - 
(e+d &Yeo-e) S - -c!!. 

0 -1 qldl--1112 

S 00 de *‘) dq, S eo de 
0 (e+d &Ye,- f9 --Ba q1 Jiq 0 (e+d4@Ff3 

(67) 

The single integral in equation (67) has a singularity at 
0= -1) since -O,<q<O and 9 therefore lies inside the region 

e 

FIGURE l?.-Region of integration showing line of singularity for equations (66) and (78). 

of integration. A corresponding singularity occurs in the 
second of the double integrals at e=-ql. Consider, there- 
fore, the integral 

S e0 de =lim 
17s 

-q--c 
0 (e-tq) @@F@ c+~ 0 

‘90 
J 

de 1 -?fc (e+q) -&&F8j (68) 

The indefinite integral is 

1 
J-qeo--112 

ln -qeo+eeo+2qe-2~(-qeo-q2)e(eo-e) 
e+q 

so that the definite integral is 

The value of this expression is 0 ant1 equation (67) therefore 
bccomcs 

2aVowz,o 
pc, =- J 

‘-ea 80 de -L ..-. .z (69) 
-, .(e+q,) ~e69,-e) 

Since, in this region of integration, -l<q<-0, it follows 
that 

S ec de 
0 (e+d liw-44) 

1 --17,eo+-eeo+2~1~ 00 1 --ii- l.~qleos-d arc2 ‘all~~i(~~~+q,eo)e(eo-e) o =x(x+l7, 
and 

The integral of equation (70) can be transformed by means 
of purely algebraic substitutions into a form that integrates 
immediately into complete elliptic integrals of the first and 
second kind. However, in the consideration of the type 3 
plan form it will be necessary to resort to other methods of 
transformation, so that a more uniform approach, employing 
Jacobian elliptic functions, will be used throughout. (See 
reference 12.) 

The quartic under t.he radical in equation (70) is first re- 
duced to an expression of the type appearing in elliptic in- 
tegrals of canonical form. This is accomplished by succes- 
sive application of the transformations 

k+ls ql=--- and s=: 

where k and 1 are chosen so as to destroy the odd powers of 
the variable. By means of these transformations, induced 
velocity becomes 
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PC1 (1-k2)k2 S 
; 

___- 
wz=o=m z(Bo-k) (1 -k2) 

[t2+(k-i) t-l]dt (71) 

1 (1 -k2t2) J(1 -t”) (k2tL 1, 

where 
k=l- l/F@ 

e. 

The integration of equation (71) will be performed after 
first considering two parts such that w~=~=w~~w~ where 

PC, (1-k2)k2 i 
wl=~o Ti.(o,,-k) (l-k? s 1 (l-kk2t2)1/(l--t2)(k2t2-1) 

and 

w2= -PC, (1 -P)dt 
____ __ 2vo dk(o,-k)(l-k2) (1 -k*P) v’n?F)pt2- 1) 

This separation is prompted by the fact that the integral for 
w1 is expressibIe in terms of eIementary functions after the 
simple transformation t*= z. The results of such an integra- 
tion lead to a value that is zero at the lower limit and infinite 
at the upper limit. However, an inspection of the original 
integral in equation (70) shows that wZZo is finite so the 
infinity obtained for w, must be canceled by a corresponding 
infinity of equal magnitude in w2. The actual proof of this 
statement necessitates, of course, treating the combined 
expressions as an indeterminate form where the upper Iimits 

of the integrals for w1 and w2 are replaced by i+ e and the 

limit is taken as E approaches zero. 
Introduce now in the integration of w2 Jacobian elliptic 

functions and set 

so that 
t=sn(u, k) =snu 

dt=cnu dnu du 

The expression for w2 becomes 

PC1 (l-kkz)k2i I’ K+ie’ ‘) 

w2’m dk(e,-k)(i-kz) K 
E du 

where K and K’ are the complete elliptic integrals of the 
first kind with respective moduli k and k’= l/l -k2. Intc- 
grating and combining with wl, one has 

PC, (l-kk2)k2i _-. 
2Vo &(e,-k)(l-k2y 

where E(u) is the incomplete elliptic integral of the second 
kind. After substitution of the limits, induced vertical 
velocity is 

PC1 (I-k2)E’ 
wp=o=-21/To J@jo-k) (l-k*) (72) 

where E’ is the complete elliptic integral of the second kind 
with modulus k’= Jl - k2. Equation (72) can be further 
simplified by writing k in terms of B. so that 

PC1 
wz=o= -2vo J 

al+ J1-eo2) E, 
eo2 (73) 

where the modulus of E’ is 41-k~ and k= 
i- Ji-eo2 B 

P 

For the loading in question 

and 

PI-PU=PO('P,r-'93=poC~ e J so--e 

pF 
Tj PoVo2 

By means of equation (73) the constant C, may be eliminated 
and 

Ap 2a /2e(i-Ji-eo2) 
P PE’T eo--8 

I 
6 

.I I I I I 
‘7” ’ 

I _ 
L 

0 .2 .4 .6 .8 I.0 
P fan 6 

FIGURE X-Load distribution over triangular plan forms of type 1. 

(74) 
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Figure 15 shows the variation of E ? with P tan 6 for values 

of p tan & equal to 0.3, 0.6, and 0.9. 
From equations (74) and (49) the lift coefficient of the right 

triangle wing with trailing edge normal to the free-stream 
direction can be determined. It follows that 

or, since C(e) = C(- e) , 

.: 
G’~~2(l-Jl-s,z) (75) 

Since the aspect ratio A is given by the equation A=ae,/p, 
equation (75) can be used to find the lift-curve slope as a 

function of A. In figure 16 a plot of /3 ‘2 as a function of 

@A is given. 

MO 

t 

,e’ ‘. ,’ ‘\ 
,’ -. 

,’ -. 
I’ . . 

,’ . . 
,’ 

L 

. . ,’ *. ,’ -. I ‘. 
,*’ -. ,’ ‘. ‘. 

.4 .8 L2 2.0 
R-4 

F~nrm It!-Variation of reduced lift-curve slope B cd2 with reduced aspect ratio p.4 101 

plan forms Of type 1. 

Triangular plan form, type 2.-Figure 12(b) shows the 
symmetrical type of triangular plan form considered in this 
section. The semivertex angle is & and B0 is defined by the 
relation 

e, = p tan A0 

The loading element used in the previous section can be used 
again and equations (61) and (62) are applicable directly. 
Because of the symmetry of the figure, it is necessary merely 
to insure the constancy of wzso over the left half of the wing 
in order that the entire wing be a flat plate. 

Summing the elements over the type 2 triangular wing, 
induced vertical velocity over the portion of the wing for 
which - 1 <‘I <0 is 

The function C(0) in equation (76) must give a constant 
value for ~(7)~~~ so that dw,,,/brl will vanish. Imposing 
this condition it ca.n be shown that a solution is given by 
the relation 

(77) 

and, after substitution in equation (76), 

?rvow,=o J’ eo 
-- 

-,iC?de 
-p4- 

_ 
0 (e2-g) Jeo2-e* 

a0 de 
r ~~-: 

7 dm - 
c 0 Jeo2-e2 s -I v1 J1-T(e2-q12) (78) 

The integration of equation (78) is to be performed under 
the assumption that -e,<~<O so that the region of 
integration in the 91,e plane for the double integral is as 
shown in figure 14. Reversing the order of integration in 
t.hc double integral, equation (78) may be written in the 
form 

TVoW,=o 
PC1 

Evaluation of integrals of the form 

I=- ea S de 
o (e+q) Jeo2-82 

is accomplished by means of the substitution 

s=!- e. 
After substitution, the integral becomes 

and, by straightforward integration, 

0 for $j<l 
I= 

77 2 

211J$-eo2 for $> l 
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This result shows that the second double integral of equation 
(79) vanishes (since f&2>v12) as does also the single integral 
in the equation. For the remaining double integral, however, 
e,2<q12 and 

equation (71) transforms to 

1 
PC, x S z2dz 

wz=“=-zv, 1 J(z’-l)(l-T?j 

Introducing the modulus k=& and making the substitution 

z=sn(u, k) =snu 

one gets the expression 

$Cl S IC+iK’ 
%=o=q K sn2udu 

BG E’ =--- 
2Vok2 

where the prime again refers to the complementary modulus .~ 
k’= Jl-k2 of the complete elliptic integral. Since k = B. 

PG E’ wz=o= - 2vo~02 

where k’ = 1/l - eo2 

(81) 

For the loading in question 

PC--P, AP 2G =-= 
1 
2 PoVo2 

(1 Voz ,leP 

so that, eliminat,ing C, between this equat,ion and equation 
(81). 

AP 4aeo2 
Q=pJp=$ E’ (82) 

Figure 17 shows the variation of $ F with P tan 6 for values 

of /3 tan so equal to 0.3, 0.6, and 0.9. 
From equations (82) and (49) it is possible to find the 

expression for lift coefficient of a triangular or delta wing. 
Thus: 

(y =2Aar 
= PE’ (83j 

Since aspect ratio of the wing is 

*2!-0 
P 

lift coefficient becomes 

FIGURE li.-Load distribution over triangular plan forms of type 2. 

where the modulus of E’ is k’= J l- htP This result 16 ’ 
agrees with tha.t obtained in another manner by Stewart, 

(reference S). In figure 18 a plot is given of p $2 as a 

function of pii. 
Triangular plan form, type 3.-Figure 12 (c) shows the 

plan form now to be considered. Relative to the J: axis or 
free-stream direction the sides of the triangle form the angles 
6. and 61 so that the total vertex angle is 60+61==2A. The 
variables B. and e1 are also introduced satisfying the relations 
e,=p tan 6,, e,=p tan 6,. The same loading element that 
was used for type 1 and type 2 triangles may be used and 
equations (61) and (62) apply. It will then be necessary to 
determine the distribution of load so that the induced vertical 
velocity over the plan form is a constant. Since this induced 
velocity must be the same on both sides of the 6=0 axis. 
two equations result: 

For -l<q<O 
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and for O<q<l 

S/l for 

From the solutions to the problems of type 1 and type 2 it is 
possible to construct a solution of the more general problem 
by expressing the loading function in the form 

(87) 

where A and B are constants that can be detcrmincd in terms 
of wzEo from equations (85) and (86). Equation (87), in 
conjunction with equations (85) md (86), yields the oxpres- 
sions 

where 

The evaluation of Z&(0,, 0,) and H,(O,, 0,) is accomplished 
in the same mamer as has been used previously: first, a 
reduction of the quartic under the radical to canonical form 
and second, transformation by means of Jacobian elliptic 
functions followed by direct integration. Since the cacu- 
lations for both equations are quite similar, only in the case 
of H,(O,, e,) will the details be mentioned. 

By means of the transformations ~l,~~:: and a=:, where 

a= 
i-e,e,-J(i-eo2j(i-e,2) 

eo+el 

The introduction of the symbols R and k defined as 

equation (89) reduces to 

1 
Hl=a2Rk I--- S [P+t(a-b)-l]dt 

1 (1 - a’P) Jct’-lFkFj 

(91) 

(92) 

(93) 

(94) 

(95) 

The integrand clivides naturally into two parts, one containing 
even powers ant1 one containing odd powers of t in the nu- 
merator. The lat terpart integrates into elementary functions 
nftcr substituting t=u2 and equation (9.5) thereby becomes 

Setting 

1 

s 

5 
12= 

(t’- I)dt 
1 (1-u2t2) J(t’-1) (l-k2t2) 

and substituting 

one gets 
x=sn(u, k) =snu 

ri+irc 
12=i 

s [ 
l+(a’-1) 13;n2u du 

K 1 
If sn y=i, I2 now may be written as 

or 

I,--K’--i dny 
s 

K+iK’ 
k2snycny K 

k~ewyn$dw;;2u & 

I,=-K’-i 
J 

where TI(u,y) is the fundamental elliptic integral of the 
third kind. 

lb: .  __.. - , , . . ,  , . . ,  , . , . ,m.--mm-. 
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The evaluation of II(U, Ic) is best achieved by means of its 
expression in terms of theta functions and zeta functions. 
Thus 

fl(% Y) =; 1% e(uSr) e(“-r) +uz(y> 

and the bracketed term in equation (88) is 

1 e(K+iK’-4e(K+r) IT(K+iK’,y)--nK,y)=Zlog B(&-r)B(K+iK’+rJ+ 

iK’Z(r) 

The theta functions are quasi-periodic, that is, they satisfy 
the relations 

e(U+2K)=e(u) 

0(u+2iK’)=-e 
g (I.?-iu) 

8 (u) 

From this property, together with the fact that e(u) is an 
even function, it follows that 

Moreover, since 

there results 

~(K+iK’,r)--nK,Y)=iK’El(r)--ir 

and 

The expression for equation (96) can now be written 

where the moduli are k for the nonprimed funcbions and 
k’= 41-k’ for the primed functions. By definition, y=arc 

sn;=F 4, k 
( > 

where F is the inromplctc elliptic integral of 

the first kind with argument $and modulus k. 

In the same notation, the equation for Hz is as follows: 

Htzb&+ {d(&k2)K’-((l--a’)&‘+k2) $;& [K 

E(,) -y F +; (g-l)] 1 (100) 

Formulas (99) and (100) can now be combined with equa- 
tions (79) to give 

and 
(101) 

I I I Iif I‘ II/l I II I//I I 

-I 

vow, 0 B= ---pi 280e, 

where 

(103) 

and E’ is the complete elliptic integral of the second kind 
with modulus &i-G 2 

From equations (87;, (lOl), and (102) 

(104) 

It should be remarked that the slope of the loading curve 
is zero at e=o. Figures 19 (a), 19 (I)), and 19 (c) show the 

variation of z A+ with p tan 6 for values of /3 tan A1 equal to 

0.3, 0.6, and 0.9, respectively, and for /3 tan So equal to 0, 
0.3, 0.6, and 0.9. 
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s 

.4 .8 

FIGURE lg.-Continued. (6) B tall &=0.6. 

From equations (49) and (104) the lift coefficient for a 
type 3 plan form is obtainable. Two cases will be developed 
here: first, when the trailing edge of the wing is perpendicular 
to the stream direction; second, when the trailing edge of 
the wing is perpendicular to the line of symmetry. The 
first configuration may be referred to as a skewed wing while 
the second configuration may be referred to as a symmetrical 
delta wing at an angle of sicleslip. Thus for a skewccl wing 

(105) 

where G is given by equation (103) and E' has the modulus 
&??. This result agrees with that given by R. C. 
Roberts in an abstract in reference 13. 

For the more practical case of the delta wing at an angle 
of sideslip, figure 12 (c), the lift coefficient can be expressed as 

&=2$i cos a 
J 

G tan A 
~ 

P 
006) 

FrGcrtE 19.-concluded. (c) 0 tan *,=".!I. 

where A is the angle of sideslip and 24 the angle between the 
leading edges, and G is expressed in terms of e,, and e1 which 
are, in turn, expressed in terms of A and A by the following 
equations 

S,=p tan (A+A) ) 
O,=p tan (A-A) j (107) 

Since the pressure distribution has been computed only for 
wings with leading edges behind the Mach cone springing 
from the apex and with a trailing edge ahead of the Mach 
cones from the wing tips, formula (106) is valid only for 
cases where 

p+ A<W’ 

A+A<, (108) 
A-A>0 I 

These restrictions are practically always met, however, for 
angles of sideslip likely to be encountered in flight. 

. ._ ..--. -. 
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I I I I 
_ _ - - - - - - - - - p =/,/x=45” /3=.5, ,z = 63.5’ 
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3 I 
_____ .____.,__ - _____________._____________ 30' 2.31 

I 
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IO’.- .h-- 

0 4 8 I2 I6 20 
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FIGURE !20.--Variation of reduced lift-curve slope p “2 with angle of sidrslip A for swnc 

plan form5 ?,I type 3. 

dC, . 
Equation (106) is plotted in figure 20 where P x 1s 

shown as a function of sideslip and A. The figure shows 

that up to 15O of sideslip p dg remains practically constant. 

AMES AERONAUTICAL LABORATORY, 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

MOFFETT FIELD, CALIF., April 14, 1947. 
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Positive directions of axes and angles (forces and moments) are shown by arrowa 

Force 
Moment about axis 

Sym- Designation bol Positive 
direction 

Angle 

Roll _________ + 
Pitch _______ 
Yaw ________ s 

Velocities 
I 

Absolute coefficients of moment 
+L C,=M c,=N 

Angle of set of control surface (relative to neutr01 
position), 6. (Indicate surface by proper subscript.) 

(r0l.Z; PS (pitchmg) 
@S 

(yawing) 
4. PROPELLER SYMBOLS 

D Diameter 
P Geometric pitch P Power, absolute coefficient OF=---& 

P/D Pitch ratio 

Fa’ 
Inflow velocity 0, Speed-power coefEcient = b pp 

J 
pn2 

Slipstream velocity 9 Efficiency 
T Thrust, absolute coefficient CT=---& 12 Revolutions per second, rps 

Q Torque, absolute coefficient &=---& 
* Effective helii .angle = tan-’ 

1 hp=76.04 kg-m/s=550 ft-lb/see 
1 metric horsepower=0.9863 hp 
1 mph=O.4470 mps 
1 mps=2.2369 mph 

5. NUMERICAL RELATIONS 

i lb=O.4536 kg 
1 kg=2.2046 lb 
1 m i= 1,609.35 m=5,280 ft 
1 m=3.2808 ft 


